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Abstract-An analytic study of possible interface failure by coalescence of an interface microcrack
and a primary interface crack in anisotropic dissimilar materials is presented. The stress intensity
factor of mode I at the tip of an interface macrocrack is shown to be always greater than that at
the tip of a neighboring interface microcrack. suggesting that the primary crack is expected to grow
into the microcrack.

I. INTRODUCTION

In a recent paper of the authors (Ni and Nemat-Nasser. in press). a complete solution for
a single fully-open interface crack in anisotropic dissimilar materials was presented. The
same approach can be applied to find the solution for multiple interface cracks in anisotropic
dissimilar materials. As an example. in this p;lper. we consider two interacting interface
cracks. one a macrocrack and the other a microcraek. in anisotropic dissimilar materials
with uniform tractions applied far from the cracks. Analytic solutions for the dislocation
distribution and interfacial tractions arc ohtained. For a special ease of the mode I defor­
mation. possible interface failure by coalescence of an interface microcrack and a prim;lry
interface macrocrack is examined in detail. It is shown that the stress intensity factor of
mode I at the tip of an interl~lce macrocrack is always greater than that at the tip of a
neighhoring interface microcrack. suggesting that the primary crack is expected to grow
into the microcrack.

2. FORMULATION

Consider two interface cracks. one a primary maerocrack and the other a microcrack.
lying at the interface along the X; = O-plane between two dissimilar anisotropic elastic solids
(Fig. I). The elastic tensors are C;41 and e,ltel• for X; > 0 and X; < O. respectively. On the
x;-plane. let the primary interface crack extend from X. = Q; to XI = h;, and the interface
microcrack extend from XI = QI to XI = hi. where - 'X) < GI < hi < G; < b; < 00. The
crack edges are all parallel to the xraxis. All field variables are assumed to be functions of
XI and X; only. Uniform normal tractions. T. in-plane shear tractions. S. and anti-plane
shear tractions. J. arc applied far from the interface cracks. in the X;-. X ,-, and xrdirections.
respectively.

As discussed in Ni and Nemat-Nasser (199Ia; in press). equilibrium requires

V'a = V· [e t :VuJ = O. ( la)

where u and a denote the displacement and the stress fields. and V is the gradient operator.
The interface tractions and displacements must satisfy
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where B(x I) is the dislocation density vector. and t(x Jl is the interf~lcial traction vector.
Then. Fourier transform yields the basic relation between t(x d and H(x d (Willis. 1971):

I [A ]t(xJl = Re.· H(xJl.
rr x 1-01

(2a)

where * denotes the convolution integral; the positive-definite matrix A may be expressed
in terms of Stroh's matrices (Stroh. 1958):

with

(2b)

(2c.d)

and

[ al,'J· i = 1.2.3.

are the six-dimensional eigenvectors of the matrix



where
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(le)

(2f-h)

the subscripts + and - correspond to the upper and lower half-spaces.
When the cracks are fully open, the total tractions over the crack surfaces L are zero,

where L denotes the union of L I = [ai, bd and L 2 = [a2' b2J. Then. we obtain

(3)

for XI in Land l' = (5, T, J). Combining (2a) and (3). it follows that

(4)

for XI in L. Equivalently. (4) can be rewritten as a system of multiple integral equations:

for XI in L = I-I+L 2• and AI = Re A, Az = -1m A.
The consistency conditions require that

(5)

r B(~) d'; = 0,1,

and

(6a,b)

(6c)

when x I is not in L, which state the fact that, outside the crack zones, the gap, the tangent
shift along the xI-axis, and the anti-plane shift along the xJ-axis arc all zero.

3. SOLUTION

One way to solve (5) for the dislocation density vector 8(XI)' under (6a-c), is as
follows. First, we use the method developed by Ni and Nemat-Nasser (199Ia; in press) to
decouple the system (4) of Cauchy singular integral equations with constant coctlicients,
then we directly apply to each of the decouplcd equations the standard method for solving
Cauchy integral equations with a contour consisting of multiple simple arcs; see, e.g.,
Muskhclishvili (1953), Mikhlin (1964) and Erdogan (1978). After simple manipulation, the
dislocation distribution and the interfacial tractions arc obtained,

for x I in L = L I+L 2 ; (7)
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In (7) and (8).

forx,notinL = [I+L,. (8)

or equivalently

(9a)

(9b)

is the generalized Dundurs constant (Ting. 1986; Ni and Nemat-Nasser, in press) ; matrices
o and Ware defined by Ting (1986) ;

(9c)

with v, as the three-dimensional eigenvectors of - i A 1 I A, corresponding to the eigenvalues
Ii" j = I, 2, 3. (iiI = If. Ii, = -Ii, (i l = 0). If we set

then \', arc evaluated to be

[

et let, + i:X.1

A = :x\-t:x~ 'i.,

et; -[:x" et7 - i:x,

:X;+i:X.,,]
et,+I1, '

et '.

(9t! )

[

). '(:x,:x 7 - et,et,,) - j),(et"et 7 -:x \':1., - et~et,,) + et 6':1. ,] [).D" - i WI ,]

VI = ),'(etlet'l-et;)-:x~ = ;,IAi ;.D" +et(I-).')v"

). '(et Jet; -:x let 7) + O(:x)et 6- et~:x; - et 1et,) +:X~:Xh ).D J, + HV,J
(ge)

(91', g)

where D and Ware elements of matrices 0 and W. The function G(x I' m) in (7) and (8)1/ '1

can be expressed explicitly,

where
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m = !+rlo.

and the constant 9 is found to be

1 {II+PI}
i'o = 21t In II - fJI . (9i.j)

(9k)

with F the hypergeometric function. and F, the hypergeometric function of two variables.

4. CONCLUSION

If the in-plane and the anti-plane deformations are not coupled. then the solutions of
the dislocation distribution vector R(x,) and the interfucial traction vector teXt) for the
case of the only in-plane deformation arc simplified as

sgn [(xl-al)(.~1 -tl!)]!Cl Il

teXt) = Jlxt-ad IXl-a!II:~I'-hJI.~~=b;1

x {s [lXo(A cos t- Bsin.t) +!XJ(A sin t+ Beos t)]
IX! (A SIO t + Beos t)

T[ -1X,(Asint+Beost) ]}
+ Clo(Acost-Bsint)-ceJ(Asint+Bcost) ,

for Xl not in L. (lOb)

where

(IOe. d)

and
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(lOg)

\Ve further simplify the problem by assuming that: (i) there is only mode I deformation.
i.e. 5 = O. r # 0: (ii) fJ = O. Then "0 = O. and m = I~. which imply that there is no
oscillation involved in the solutions of the dislocation density and the interfacial traction.
Under these assumptions. from (lOa. b) we obtain the dislocation density and the interfacial
traction vectors. as follows:

for x, in L. and

sgn [(xl-a,)(x,-a~)lTA(x,)[~J
t(x,) =- ---------------. --_._----

I-ad IXI-a~llxl-hdIx,-h~1

(II a)

(II b)

for x I not in L. where

with

( lie)

K().) and EO.) are the complete elliptic integrals of the first and second kind.
We now set Ih l -all = I:. 1{/~-h,1 = h, Ih~-a11 = I. and /; < I, k > 0 (Fig. 2), which

means that the primary crack is a macrocraek, and the other interface crack is a microcrack :
the distal1l:e between the microcrack and the macrocrack, depending on k and /:, can be
arbitrary. It now follows that

---.,

re I krK~'1 = J.( 2:--:)[(I+K)£(i.)/K().)-klT.

( I~a)

( 12b)

The ratio between the stress intensity factor of mode I at the tip x, = a1 of the
macrocrack and that at the tip x, = h, of the microcrack is

e ke

Fig. 2.
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Kf' )T+k [(I +ke)EU.)/KU·)-ke]

K~' = )1 +ke [(I +k)EU.)/K().)]

JI+k [EU.)/K().) - h( I - E().)!K(;.) )]

) 1+ h [E(i.)!K().) - k( I - E(i.)/K().»] •

1945

(13)

which is always greater than I for any k > 0 and E < I. since E().)/KU.) < I. where
;. = [( I +k)(1 +h)]-'~. Therefore.

( 14)

always holds.
We conclude that the stress intensity factor of mode I at the tip of an interface

macrocrack is always greater than that at the tip of a neighboring microcrack; hence the
primary crack tends to grow into the microcrack.
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