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Abstract—An analytic study of possible interface failure by coalescence of an interface microcrack
and a primary interface crack in anisotropic dissimilar materials is presented. The stress intensity
factor of mode I at the tip of an interface macrocrack is shown to be always greater than that at
the tip of a neighboring interface microcrack, suggesting that the primary crack is expected to grow
into the microcrack.

I. INTRODUCTION

In a recent paper of the authors (N1 and Nemat-Nasser. in press). a complete solution for
a single fully-open interface crack in anisotropic dissimilar materials was presented. The
same approach can be applicd to find the solution for multiple interface cracks in anisotropic
dissimilar materials. As an cxample, in this paper, we consider two interacting interface
cracks, one a macrocrack and the other a microcrack, in anisotropic dissimilar matcrials
with uniform tractions applied far from the cracks. Analytic solutions for the dislocation
distribution and interfuacial tractions are obtained. For a special case of the mode [ defor-
mation, possible interface failure by coalescence of an interface microcrack and a primary
interface macrocrack is examined in detail, It is shown that the stress intensity factor off
mode I at the tip of an interface macrocrack is always greater than that at the tip of a
neighboring interface microcrack, suggesting that the primary crack is expected to grow
into the microcrack.

2. FORMULATION

Consider two interface cracks, one a primary macrocrack and the other a microcrack,
lying at the interface along the x, = 0-plane between two dissimilar anisotropic elastic solids
(Fig. 1). The elastic tensors are C %, and C,;,, for x; > 0 and x, < 0, respectively. On the
x,-plane, let the primary interface crack extend from x, = ¢, to x, = b,, and the interface
microcrack extend from x, =, to x;, = b, wherc —0 <a,<b, <a,< b, <x. The
crack edges are all parallel to the x;-axis. All field variables are assumed to be functions of
X, and x, only. Uniform normal tractions, 7, in-plane shear tractions, S, and anti-plane
shear tractions, J, arc applicd far from the interface cracks, in the x»-, x,-, and x;-directions,
respectively.

As discussed in Ni and Nemat-Nasser (1991a; in press), equilibrium requires

Veg=V-[Ct:Vu] =0, (1a)

where u and o denote the displacement and the stress fields, and V is the gradient operator.
The interface tractions and displacements must satisfy
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C':Vu(x,,0') =C Vu(x, .0 ) =t(x)), (1b)
w(x;.0") —u(x,;,0 )= — J B(Z) de, (t¢)
. X)) =0 x| - o, (Idy

where B(x)) is the dislocution density vector, and t(x,) is the interfacial traction vector.
Then, Fourier transtform yields the basic relation between t(x,) and B(x)) (Willis, 1971):

| A
t(x,) = Rec [ ]* B(x,). (2:)
T X, =0

where * denotes the convolution integral; the positive-definite matrix A may be expressed
in terms of Stroh’s matrices (Stroh, 1958):

A= AL, A L '] " (2b)
with

A= [ﬂl,ag.ﬂll. L= [Il-l:-lll; (2c.d)

[‘;} i=1.2.3

are the six-dimensional eigenvectors of the matrix

and
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o[ TWROT .
RT-'R’—Q RT-']

where
Q = [¢j1al)- R = [c;2]. T = [c,%]: (2f-h)

the subscripts + and — correspond to the upper and lower half-spaces.
When the cracks are fully open, the total tractions over the crack surfaces L are zero,
where L denotes the union of L, = [a,. ] and L, = [a.. b:]. Then, we obtain

t{ix)+r=0 3)

for x,in L and t = (S. T. /). Combining (2a) and (3). it follows that

:—rRe[ A ]*B(x,)+t=0 (4

X —0i

for x, in L. Equivalently, (4) can be rewriiten as a system of multiple integral equations:

PO Y LT PO o
{ 1

L X =6 s X =<

forviinL =L+ L, and A, = Rc A, A;r: - fm A,
The consistency conditions require that

f B(&)dE =0, f B dE =0, (6a.b)
1, L,

and

B(x,) =0, (6c)

when v, is not in L, which state the fact that, outside the crack zones, the gap. the tangent
shift along the x,-axis, and the anti-plane shift along the x,-axis are all zero.

3. SOLUTION

One way to solve (5) for the dislocation density vector B(x,), under (6a—c), is as
follows. First, we use the method developed by Ni and Nemat-Nasser (19914 in press) to
decouple the system (4) of Cauchy singular integral equations with constant coeflicients,
then we directly apply to cach of the decoupled equations the standard method for solving
Cauchy integral equations with a contour consisting of multiple simple arcs; see, e.g.,
Muskhelishvili (1953), Mikhlin (1964) and Erdogan (1978). After simple manipulation, the
dislocation distribution and the interfacial tractions are obtained,

G(x,,m) 0 0
B(x,) = sgn (v, ~a,) ———= 0 G(x,.m) 0 E-'Ar's,
VI-F 0 0 G}

forx,inL=L,+L,; (7
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Glx,.m) 0 0
t(x;) = sgn{x,—a,) (x,—a.)]AE 0 G(x,.m) 0 E 'A 'z
0 0 G(x,. Y

forx;notinL =L, +L,. (8

In (7) and (8).

f‘\l)l 2
= l-—-— . P
ﬁ ( |A[’ (9d)

or equivalently
B=[-ltr(WD "' (9b)

is the generalized Dundurs constant (Ting. 1986 : Ni and Nemat-Nasser, in press) ; matrices
D and W are defined by Ting (1986) ;

E=[vi. v, (9¢)

with v, as the three-dimensional eigenvectors of —iA, 'A; corresponding to the cigenvalues
Boi=123.(f=pB,= —fF, =0) If wescet

Ay 1\+i14 15+i1(,
A= ay—ixy %, %o H Ay | (9d)
A=A, Aq— Ay Ay
then v, are evaluated to be
ATy — 2 3oty) = EA(R A7 = g2y — A 3%y) + X2y AD =W,
v, = Ay —as) — o} = AJA] iDsy +a{l —A7)vy,
A= 2 27} AR — X2 — 2 %) + XX ADy+iW,,
(9¢)
Ay Wiy
vi=1¥,, vy=|—a,|=—|AID| =W (9f, g)
&, Wi,

where D,; and W, are elements of matrices D and W. The function G(x,, m) in (7) and (8)
can be expressed explicitly,

Glx.m) = [,,(,.'Y_"'al)(-\”l’—a:)+'"(ﬂ:+“2"h|—h:)(xr —ax)+g] {l(xl _al)(-\'l—az)!}r""
. \/I-\'l_ﬂxl[-\'l—azl|-\'|"’7|-[-|>-V|“h:l [Cer=h e =52l
(9h)

where
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. 1 I1+8 ..
=1 ¥ M = e e
m= i+ . 7o ann{ll—ﬂl}' 9.y

and the constant g is found to be

_ a;—b, (a:=b2) (ax—b3)
9= (a:=5) (b:—-b‘)“ {F‘[l . -m.m..?.(a:“al} ’ (az—bx)]

a,—b,) (a,—by)
+mla,+a,—b,—b)F, [l +m. 1 —m, 91,2;2(‘:_“0]) ) Ea:-bn)]}

. _(bz“a:)(ba‘ax) -
X {F[m'l__m'l’m(az——a,)(bz—b.)]} . 9k)

with F the hypergeometric function, and F, the hypergeometric function of two variables.

4. CONCLUSION

If the in-plane and the anti-plane deformations are not coupled, then the solutions of
the dislocation distribution vector B(x,) and the interfucial traction vector t{x,) for the
case of the only in-plane deformation are simplified as

Sgn (xl - a;!{a(,<§9,, ~

B(X|) = I T T I T T e
\/lxz —aflxy—arl |, = by, :hgf
8 {S[ a{Acost— Bsint)
ay{Asint+ Beosty—a(Acost— Bsing)
ay{Asint+ Beost)+a;{Acost— Bsiny)
-T . .
—a{Acost— Bsint)
forx,inl; (10a)
sgn [(xy—a)(x,—u,5)]/x
t(x,) =~ B [Cxy LA N/
VIgi—aillxi—arl x, b\l [x,~b)|
9 {S [ao(A cosi—Bsint)+a,(Asint+ Beos 1)
a,(Asinr+ Bceost)
+T[ —a,(Asint+ Bcos 1)
ag(Acost—Bsint)—ay(Asint+ Beost) |}’
forx, notin L, (10b)
where
do = (my2:—a)"? agy = (s —ai—2i)'"?, (10c,d)
A= Alx)) = (x,—a)(x,—a)+ a,+a,—h,~b;)+Re[g], (10e)
B = B(x|) = yola;+a,—b,—b)+Im[g]. (10f)

and
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[{x,—a)(x, —a:)l}
t=17,l . g
° “{ux.—b.nxl—b:n (10g)

We turther simplify the problem by assuming that: (1) there is only mode I deformation.
1. $S=0. T#0: (1) f=0. Then y,=0. and m = |2, which imply that there is no
oscillation involved in the solutions of the dislocation density and the interfacial traction.
Under these assumptions. from (10a, b) we obtain the dislocation density and the interfacial
traction vectors, as follows:

sgn (v, —a,)TA(x)) [;1":]
1

B(x,) = mp—— . (1la)
10\/|-\'l“‘a|| Xy —a|fxy—b] |x;—byl

for vy in L. and

0
sgn[(x,—a) (v, —a)]TA(x,) [I:I
t(v,) = — R (11b)

yrr—— —_— . iy
\/l-\'n —ad |y —asl [x;=b]|x,—by

for x, notin L. where
A = (x =a)(x, —a)+ Hay+a,—b —b)(x,—ar)+g, (1)
g = Mar—a)(ay=h) = Hay—a)(by—b) E(A)]K(4), (11d)
with

| himathi—a) |7 _
""[(b{—a})(h;—h.J ; (tle)

K(4) and E(4) are the complete elliptic integrals of the first and sccond kind.

We now set |hy —ay| =& [ay—b,] = ke, |ba—ay] = |, and ¢ < 1, k > 0 (Fig. 2), which
means that the primary crack is a macrocrack, and the other interface crack is a microcrack ;
the distance between the microcrack and the macrocrack, depending on & and &, can be
arbitrary. It now follows that

Kb = / n 132{‘1‘5) [(1 + K)EG)/K(4) —k]T. (12b)

The ratio between the stress intensity factor of mode I at the tip x = u; of the
macrocrack and that at the tip x, = b, of the microcrack is

S| b1 a2 b2

Fig. 2.
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Kt J1+k[(1+ke) E(A)/ K(A) — ke]
K /s [(1+K)EGK ()]
JU+k [E(R)/K() —ke(1 = EG)/K(A)]
- STk [EG)/K () k(1 = EGY/KG))

)

(13)

which is always greater than | for any £ >0 and ¢ < I, since E(4)/K(4) < |, where
2= [(1+k)(1 +ke)] ™~ '°. Therefore.

Ki: > K (14)

always holds.

We conclude that the stress intensity factor of mode I at the tip of an interface
macrocrack is always greater than that at the tip of a neighboring microcrack ; hence the
primary crack tends to grow into the microcrack.
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